Delayed Sampling and Automatic

Rao—Blackwellization of Probabilistic Programs

Lawrence Murray!, Daniel Lundén?, Jan Kudlicka!, David Broman?, Thomas Schon'

'Uppsala University and “KTH Royal Institute of Technology

1. Motivation

» Probabilistic programming languages often perform inference using
the bootstrap particle filter.

» We would like to enable variance reduction techniques such as
Rao—-Blackwellization, locally-optimal proposals, and variable
elimination.

» Ideally, this should be automatic, without changes to program code.

2. Idea

As they execute, probabilistic programs typically trigger checkpoints of two
types:

» sample to eagerly sample a random variable, and

» observe to update a weight given some value for a random variable.

We instead use three types:
» assume to initialize a random variable with some distribution,
» vValue to instantiate such a random variable, and
» observe to condition given some value for a random variable.

4 )

These three types facilitate delayed sampling. Between assume and
value checkpoints, the distribution of a random variable can be updated
at observe checkpoints, using analytical relationships such as conjugate
priors and affine transformations.

o )

The analytical relationships are maintained in a directed graph alongside the
running program. Checkpoints trigger operations on this graph, such as inser-
tion, marginalization, observation and sampling.

@O0 0w
@@ @@
@ @ @ @ e e ) ) e

3. Benefits

This can significantly reduce variance in marginal likelihood estimates (left,
dark gray) versus a bootstrap particle filter (right, light gray).

-51

. H == = N — e =——

—400 -

_53 -

—450 -

log(2)

_55 -

log(2)

_57 -
—-550 -

-59 —-600

I I I I I I I I I I I I
64 128 256 512 1024 2048 512 1024 2048 4096 8192 16384
N N

For a linear-nonlinear state-space model, delayed sampling marginalizes
out the linear component of the state to automatically produce a Rao-
Blackwellized particle filter.

Similarly, for an epidemiological model, delayed sampling marginalises out
the parameters, producing a random-weight or pseudo-marginal-style impor-
tance sampler with similar improvements.

4. Implementation

Delayed sampling has been implemented in Anglican and Birch, a new
universal probabilistic programming language.

5. Worked Example

Code Checkpoint
a ~ Gaussian(0.0, 1.0); assume(a)

b ~ Gaussian(a, 1.0); assume(b)

c ~ Gaussian(b, 1.0); assume(c)

d ~ Gaussian(b, 1.0); assume(d)

e ~ Gaussian(d, 1.0); observe(e)

print(c); value(c)

: Q marginalized
@ Q realized

A number annotating a node
indicates the number of obser-
vations on which it has been

| conditioned.

Marginalized nodes must
form a single path, called
the M-path, extending

DU from the root.

~

Below, this rule iIs vio-
lated, and sampling of ¢
does not benefit from the

@ _ observation of e. y

IR 4 Y X
® @ OO0 @

. © X
O @ @ o

4 N

The fix is to retract the
M-path before extend-
ing it to a node to be
sampled or observed.

N )

iy

o T %y S
#KTHY
% VETENSKAP % U

UPPSALA @g’g&‘o CH KONST gg“’ SWEDISH FOUNDATION for
UNIVERSITET agq%x _&% STRATEGIC RESEARCH




